
Investigations into using HDF5 as
An Alternative to STEP for

Finite Element Modeling Data
Vailin Choi and Mike Folk

The HDF Group
April 2007

1 Introduction
This study continues previous investigations into the
viability of using a general purpose format such as HDF5
for preserving engineering data.1

The previous effort focused on two product model data
objects: Cartesian points and B-splines [1]. This study
investigates another type of data object that presents
scalability challenges: finite element modeling (FEM)
data. FEM is a common method used in engineering
design and can produce enormous amount of data. The
main goal of this investigation is to explore how HDF5
might provide effective storage to meet the needs of ever-
increasing growth of data volumes.

Using two sets of data collections, the objectives of this
work are to (a) map finite element representations
together with their related entities into HDF objects and
structures, (b) explore different ways of mapping these
data into HDF5 based on the finite element STEP data
characteristics and HDF5 features, and (c) assess the
benefit and costs of such HDF5 storage mappings.

2 Background
Current formats for managing finite element modeling
data are based on the STEP format2. The semantics of
data stored in STEP is described in the EXPRESS data
description language, an object-oriented information
modeling language [2].

Currently, EXPRESS objects are instantiated in STEP as
ASCII text. Alternative XML implementations are also
available [3]. STEP is a successful ISO standard[4], and is
well accepted and supported. However, ASCII-based

1 This work is part of a project at the National Center for
Supercomputing Applications (NCSA) and The HDF
Group, supported by the National Archives and Records
Administration (NARA), to investigate the use of
scientific data formats to support long term preservation
of high volume, complex federal records.
2 STEP (STandard for the Exchange of Product data)
refers to the “International Standard ISO 10303 Industrial
systems and integration - Product data representation and
exchange.”

implementations do not adapt well for highly voluminous,
complex data, such as data used in applications like finite
element analysis and computational fluid dynamics.
STEP is also not suitable for the heterogeneous
supporting data found in collections of product model
data, such as digital photographs, blueprints, and
formatted text.

These shortcomings of STEP have led to a number of
attempts to develop an alternate binary format. One such
effort is EuroSTEP’s EXPRESS/Binary Project [4],
whose goal is to “standardize a mapping into a more
efficient (i.e. binary) file representation” for EXPRESS
data. It is hoped that this alternate file representation
may satisfy the needs of several applications, such as
Thermal Analysis and Finite Element Analysis, which
utilize very large datasets for their information models.
The EuroSTEP Project identified a number of criteria for
such a new file representation:

• Available everywhere – open source, free
• Architecture-independent specification and

extensibility
• Platform-independent implementation
• General purpose capability

− Custom Structure
Definition/Representation

− Alignment with EXPRESS (datatypes,
structures, rules)

− Support for mixed content

• Fast read/write performance
• Out-of-core data access (partial I/O)
• Large files support, compression
• Applicability for long term archiving
• Pedigree, viability, widespread usage and some

standardization
• Support, training, high quality documentation

The EXPRESS/Binary Project selected HDF5
(Hierarchical Data Format) as the binary format for initial
investigation. The project has developed mappings from
EXPRESS to HDF5, and has recently presented a
prototype of these mappings to the International
Standards Organization (ISO).

The work reported here builds on the EuroSTEP Project,
and was done in collaboration with the Project. It uses
some of the EXPRESS-HDF5 mappings to investigate

 1

the viability of using HDF5 as a binary format for storing
finite element data.

3 Mapping of EXPRESS Data to HDF5
The two basic constructs of the EXPRESS language are
entities and types. Types in EXPRESS include
primitive types such as integer and string, as well as
enumeration, aggregation, and select types. An entity, which
represents a real-world object, is composed of named
properties called attributes, each of which has an
associated data type. An instance of an entity has an
identifier as well as values associated with each declared
attribute. A schema is a collection of EXPRESS entity
declarations while a data population consists of entity
instances that conform to the entity data type
declarations.

HDF5 is a general purpose file format for storing large or
complex volumes of scientific data. It consists of two
primary objects: datasets and groups. “A dataset is
essentially a multidimensional array of data elements, and
a group is a structure for organizing objects in an HDF5
file. Datasets and groups can be stored in different ways
so as to improve storage or I/O efficiency, and both can
have associated metadata in the form of HDF5
attributes. Using these as basic building blocks, one can
create and store almost any kind of scientific data
structure in HDF5, such as images, arrays of vectors, and
structured and unstructured grids.” [5]

The representation of EXPRESS-driven data using
HDF5 is specified by relating EXPRESS data concepts to
HDF5 data concepts. Each entity declaration is
represented as an HDF5 compound data type with the
corresponding HDF5 data types for its attributes. The
set of instances of an EXPRESS entity type is treated as a
dataset in HDF5 and each population of an EXPRESS
schema is represented as an HDF5 group. Details of
mapping from EXPRESS data to HDF5 are described in
EXPRESS Data as HDF5 Mapping Specification Version
0.5. [4]

4 Testing Data

4.1 Collections

Two sets of data from STEP files are used for this study:

A. The first set, CONROD.stp (henceforth
“CONROD”), is populated based on the
structural_analysis_design schema and contains
finite element data for 10-node quadratic
tetrahedra. The CONROD STEP file is about
1,206K (kilobytes).

B. The second set, hull_mesh_1.stp (henceforth
“HULL”), is also populated based on the

structural_analysis_design schema. It contains
finite element data for 3-node linear triangles
and 4-node linear quadrilaterals. The HULL
STEP file is 1,368K.

4.2 Data characteristics

To investigate the appropriateness of HDF as the binary
format for the finite element data,
VOLUME_3D_ELEMENT_REPRESENTATION in the
CONROD collection and
SURFACE_3D_ELEMENT_REPRESENTATION in the
HULL collection are identified. The former
representations are for 10-node quadratic tetrahedra and
the latter are for 3-node linear triangles and 4-node linear
quadrilaterals.

4.3 Testing scalability with larger files

From an HDF5 perspective, the CONROD and HULL
files are relatively small. Indeed both are small enough
that they can easily fit into the memory of most
computers today. Since the purpose of this study is to
investigate the use of HDF5 for high volume FEM data,
two larger files were created.

These two files are based on the CONROD and HULL
files, and were created by increasing by a factor of 100 the
number of those entity instances that seemed most likely
to increase when the resolution of a FEM would increase,
namely Cartesian points, nodes, and elements. The values
stored for these entities were created with a random
number generator. Table 2 lists the affected elements.

The larger files are referred to as CONROD* and
HULL*.

5 Storage Formats in HDF
As observed from the above tables, node,
surface_3d_element_representation,
volume_3d_element_representation, cartesian_point
and direction are entities which have relatively larger
number of instances in either collection. They are
selected for applying the HDF5 storage methods
discussed below because some of their attributes are of
significance in showing the appropriateness of HDF as
the binary format for conversion. All five entities are also
selected to be stored in HDF with compression and
without compression for this study.

5.1 Method 1 – use exact EXPRESS-HDF5
mapping v. 6.

All the entities are converted to HDF counterparts
following closely to what are described in the EXPRESS
schema definition and in EXPRESS Data as HDF5
Mapping Specification Version 0.5 [4]. Each entity with its
attributes is represented as an HDF compound structure
with the corresponding fields. See the column “HDF5

 2

Method 1” in Tables 3-7 for the mapping of the five selected entities.
Table 1 lists the number of instances of these two element representations together with their associated entities.

 Entity
of

instances for
CONROD

of
instances for

HULL

ALIGNED_SURFACE_3D_ELEMENT_COORDINATE_SYSTEM 0 2
CARTESIAN_POINT 15,235 5,500
CHARACTERIZED_OBJECT 1 1
DATA_ENVIRONMENT 1 1
DIMENSIONAL_EXPONENTS 2 3
DIRECTION 236 4
ELEMENT_MATERIAL 1 1
FEA_AXIS2_PLACEMENT_3D 15 2
FEA_LINEAR_ELASTICITY 1 1
FEA_MASS_DENSITY 1 1
FEA_MATERIAL_PROPERTY_REPRESENTATION 2 2
FEA_MODEL_3D 1 1
FEA_PARAMETRIC_POINT 0 2
MATERIAL_PROPERTY 1 0
MEASURE_REPRESENTATION_ITEM 1 1
NAMED_UNIT 5 6
NODE 1,260 5,497
PROPERTY_DEFINITION 0 1
PROPERTY_DEFINITION_REPRESENTATION 1 1
REPRESENTATION 3 3
REPRESENTATION_CONTEXT 2 1
SURFACE_3D_ELEMENT_DESCRIPTOR 0 2
SURFACE_3D_ELEMENT_REPRESENTATION 0 5,453
SURFACE_ELEMENT_PROPERTY 0 1
SURFACE_SECTION_FIELD_CONSTANT 0 1
UNCERTAINTY_MEASURE_WITH_UNIT 1 0
UNIFORM_SURFACE_SECTION 0 1
VOLUME_3D_ELEMENT_DESCRIPTOR 1 0
VOLUME_3D_ELEMENT_REPRESENTATION 546 0

Table 1. Elements converted from CONROD and HULL files to HDF5, including the number of instances for
each entity.

Entity
(Increased 100 times)

of
instances for
CONROD*

of
instances for

HULL*

CARTESIAN_POINT 1,523,500 550,000
NODE 126,000 549,700
SURFACE_3D_ELEMENT_REPRESENTATION 0 545,300
VOLUME_3D_ELEMENT_REPRESENTATION 54,600 0

Table 2. Elements whose numbers were increased in the larger files, including the number of instances for
each entity.

5.2 Method 2 – substitute fixed length for
variable-length elements

Adhering to the original STEP schema definition in [4],
Method 1 uses variable length datatypes for certain
attributes, such as the name attributes in Table 3 through
Table 7. Because variable length representations in
HDF5 have a significant overhead, Method 2 stores
attributes with varying elements as fixed-length arrays in

HDF5. This is based on the observation that all
instantiations for that entity have the same number of
elements for its variable-length attribute. See the column
HDF5 Method 2 in the tables below.

Changes to the mapping for these STEP entities are
described below:

 3

• CARTESIAN_POINT:

• name is a variable length string. Since this
attribute is at most 12 characters long for all the
instances of this entity, it is represented as a
character array of length 12.

• DIRECTION:

• name is a variable length string. Since it is at
most 12 characters long, it is represented as a
character array of length 12.

• NODE:

• name is a variable length string. Since this
attribute is at most 6 characters long for all the
instances of this entity, it is represented as a
character array of length 6.

• items has only one reference to a cartesian_point
entity for all instances of this entity in both
collection set A and B. It is therefore
represented as an integer in the HDF compound
structure for node.

• SURFACE_3D_ELEMENT_REPRESENTATION:

• name is a variable length string. Since this
attribute is at most 6 characters long for all the
instances of this entity, it is represented as a
character array of length 6.

• node_list has at most 4 references to a node entity
for all instances of this entity in collection set B.
It is therefore represented as an integer array of
4 elements in the HDF5 compound structure
for surface_3d_element_representation.

• items has 2 references to
aligned_surface_3d_element_coordinate_system and
fea_parametric_point entities for all instances of
this entity in collection set B. It is therefore
represented as an integer array of 2 elements in
the HDF5 compound structure for
surface_3d_element_representation.

• VOLUME_3D_ELEMENT_REPRESENTATION:

• name is a variable length string. Since it is at
most 6 characters long, it is represented as a
character array of length 6.

• node_list has 10 references to a node entity for all
instances of this entity in collection set A. It is
therefore represented as an integer array of 10
elements in the HDF5 compound structure for
volume_3d_element_representation.

• items has 1 reference to an fea_axis2_placement_3d
entity for all instances of this entity in collection
set A. It is therefore represented as an integer in
the HDF5 compound structure for
volume_3d_element_representation.

5.3 Method 1-A or 2-A – remove repeated values

The third storage method is implemented together with
either Method 1 or 2, and is referred to as Method 1-A
or 2-A respectively.

This method is based on the observation that some
references from the following three entities to other entity
instances are the same for all the instantiations of that
entity. These references are therefore stored as metadata
in the form of HDF attributes associated with the
corresponding dataset. See the last column in tables 3-7.

Changes to the mapping for these STEP entities are
described below:

• NODE:

• context_of_items and model_ref references are the
same for all instances of this entity in collection
set A or B. They are therefore stored together
as a compound structure in the form of HDF5
attribute associated with the NODE dataset.

• SURFACE_3D_ELEMENT_REPRESENTATION:

• context_of_items, model_ref, property and material
references are the same for all instances of this
entity in collection set B. They are therefore
stored together as a compound structure in the
form of HDF5 attribute associated with the
surface_3d_element_repreasentation dataset.

• VOLUME_3D_ELEMENT_REPRESENTATION:

• context_of_items, model_ref , element_descriptor , and
material references are the same for all instances
of this entity in collection set A. They are
therefore stored together as a compound
structure in the form of HDF5 attribute
associated with the
volume_3d_element_repreasentation dataset.

5.4 Summary

Table 3 through Table 7 summarize the four different
methods described above.

 4

Attribute EXPRESS types
HDF5

Method 1
(direct conversion
from EXPRESS

HDF5
Method 2

(variable length
elements stored as

HDF 5
Method 1-A/2-A
(repeated values
stored as HDF5

name label (STRING) variable length of
H5T C S1

ARRAY[12] of H5T_C_S1 Same

coordinates LIST[1:3] of
length_measure

(REAL)

ARRAY[3] of
H5T_NATIVE_FLOAT

ARRAY[3] of
H5T_NATIVE_FLOAT

Same

Table 3 Storage Methods for cartesian_point

Attribute EXPRESS types HDF5
Method 1

HDF5
Method 2

HDF 5
Method 1-A/2-A

name label (STRING) variable length of
H5T C S1

ARRAY[12] of
H5T C S1

same

direction_ratios LIST[2:3] of REAL ARRAY[3] of
H5T NATIVE FLOAT

ARRAY[3] of
H5T NATIVE FLOAT

Table 4 Storage Methods for direction

Attribute EXPRESS types
HDF5

Method 1
HDF5

Method 2
HDF 5

Method 1-A/2-A

name label (STRING) variable length
of H5T_C_S1

ARRAY[6] of
H5T_C_S1

Same

items SET [1: ?] of
representation_item

(ENTITY)

variable length
of

H5T_NATIVE_INT

H5T_NATIVE_INT

Same

context_of_items representation_context
(ENTITY)

H5T_NATIVE_INT Same HDF5-attribute

model_ref fea_model (ENTITY) H5T_NATIVE_INT Same HDF5-attribute

Table 5 Storage Methods for NODE

Attribute EXPRESS types
HDF5

Method 1
HDF5

Method 2
HDF 5
Method
1-A/2-A

name label (STRING) variable length of
H5T_C_S1

ARRAY[6] of
H5T_C_S1

same

items SET[1:?] of
representation_item

(ENTITY)

variable length of
H5T_NATIVE_INT

ARRAY[2] of

H5T_NATIVE_INT

same

context_of_items representation_context
(ENTITY)

H5T_NATIVE_INT Same HDF5-
attribute

node_list LIST[1:?] of
node_representation

(ENTITY)

variable length of
H5T_NATIVE_INT

ARRAY[4] of
H5T_NATIVE_INT

Same

model_ref fea_model_3d (ENTITY) H5T_NATIVE_INT Same HDF5-
attribute

element_descrip-
tor

surface_3d_element_descri
ptor (ENTITY)

H5T_NATIVE_INT Same same

property surface_element_property
(ENTITY)

H5T_NATIVE_INT Same HDF5-
attribute

material element_material (ENTITY) H5T_NATIVE_INT Same HDF5-
attribute

Table 6 Storage methods for SURFACE_3D_ELEMENT_REPRESENTATION

 5

Attribute EXPRESS types
HDF5

Method 1
HDF5

Method 2
HDF 5
Method
1-A/2-A

name label (STRING) variable length of
H5T_C_S1

ARRAY[6] of
H5T_C_S1

same

items SET[1:?] of
representation_item

(ENTITY)

variable length of
H5T_NATIVE_INT

H5T_NATIVE_INT same

context_of_items representation_context
(ENTITY)

H5T_NATIVE_INT Same HDF5-
Attribute

node_list LIST[1:?] of
node_representation

(ENTITY)

variable length of
H5T_NATIVE_INT

ARRAY[10] of
H5T_NATIVE_INT

Same

model_ref fea_model_3d (ENTITY) H5T_NATIVE_INT Same HDF5-
attribute

element_descrip-
tor

volume_3d_element_descript
or (ENTITY)

H5T_NATIVE_INT Same HDF5-
attribute

material element_material (ENTITY) H5T_NATIVE_INT Same HDF5-
attribute

Table 7 Storage methods for VOLUME_3D_ELEMENT_REPRESENTATION

5.5 Data compression

All of the above methods were applied a second time to
the CONROD and HULL files with compression applied
to the datasets. However, only the HDF5 files were
compressed, not the STEP files. This requires some
explanation, as follows.

No matter what format is used, data compression can be
beneficial in saving storage space and improving
transmission time. In comparing a text-based format with
a binary format, such as STEP with HDF5, there are
some special factors to consider.

Formats such as STEP and XML can compress very well,
but when a STEP or XML file is compressed, it becomes
difficult to access individual records without
uncompressing the entire file. HDF5 avoids this problem
by individually compressing datasets, and by including
indexes that tell where the compressed datasets are
located in the file. This makes it possible to access data
by only uncompressing the datasets of interest, not the

whole file. Very large arrays in HDF5 can also be broken
into individually-compressed “chunks”, so that only those
chunks containing the data records of interest need be
uncompressed.

For these reasons, and since our interest is in storing and
accessing STEP data in which there are very large arrays
of data, we only consider the case in which we would not
compress a STEP file, but would compress individual
objects in an HDF5 file.

6 Results
Table 8 shows the results from the study of the original
CONROD and HULL files, including the sizes of the
original STEP files, and the sizes of the corresponding
HDF5 files with and without compression for each
storage method. Figures 1 and 2 show the percent space
savings from using the different HDF5 storage methods.

 HDF5 with no compression HDF5 with compression

Set
Method 1

(variable len types)
Method 2

(fixed length types)
Method 1

(variable len types)
Method 2

(fixed length types)

 STEP Method
1

Method
1A

Method
2

Method
2A

Method
1

Method
1A

Method
2

Method
2A

CONROD 1,206 1,145 1,126 572 554 785 785 386 386
HULL 1,368 1,739 1,608 663 533 1,057 1,057 307 307

Table 8 File sizes (K) for storage methods 1, 1-A, 2, 2-A. See Figure 1 and Figure 2.

 6

5% 7%

53% 54%

-27%

-18%

61%

51%

-40%

-30%

-20%

-10%

0%

10%

20%

30%

40%

50%

60%

70%

Method 1 Method 1-A Method 2 Method 2-A

HDF5 Storage Methods

Pe
rc

en
t s

av
ed

CONROD

HULL

Figure 1. Percent saved between STEP and four
HDF5 storage methods. No compression.

90%

78% 78%80%

68% 68%70%

pe
rc

en
t s

av
ed

60%

50% CONROD

40% 35% 35%

30%
23% 23%

20%

10%

0%
Met d 2 Method 1 Method 1-A ho

HDF storage methods
Method 2-A

HULL

Figure 2. Percent saved between STEP and four
HDF5 storage methods. With compression.

Table 9 shows the results from the study for CONROD* and HULL* (the large versions of the CONROD and HULL
files), including the sizes of the original STEP files, and the sizes of the corresponding HDF5 files with and without
compression for each storage method.

Figures 3 and 4 show the percent space savings from using the different HDF5 storage methods.

 HDF5 with no compression HDF5 with compression

Set
Method 1

(variable len types)
Method 2

(fixed length types)
Method 1

(variable len types)
Method 2

(fixed length types)

 STEP Method
1

Method
1A

Method
2

Method
2A

Method
1

Method
1A

Method
2

Method
2A

CONROD* 119,179 106,394 104,513 49,689 47,808 77,392 76,158 30,131 30,128
HULL* 138,545 164,384 151,262 59,202 46,080 96,963 95,674 23,538 23,531

Table 9. File sizes (K) for storage methods 1, 1-A, 2, 2-A, where high-multiple data are 100 times larger.

11% 12%

58% 60%

-19%

-9%

57%

67%

-30%

-20%

-10%

0%

10%

20%

30%

40%

50%

60%

70%

80%

Method 1 Method 1-A Method 2 Method 2-A

HDF5 storage methods

pe
rc

en
ta

ge
 s

av
ed

CONROD*

HULL*

Figure 3. Percent saved on large files between STEP
and four HDF5 storage methods. Certain entity
instances are increased 100-fold. No compression.

35% 36%

75% 75%

30% 31%

83% 83%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Method 1 Method 1-A Method 2 Method 2-A

HDF5 storage methods

pe
rc

en
ta

ge
 s

av
ed

CONROD*

HULL*

Figure 4. Percent saved on large files between STEP
and four HDF5 storage methods. Certain entity
instances are increased 100-fold. With compression.

 7

7 Analysis
The following observations are made from the resulting
data:

• Method 1, which uses variable-length datatypes for
large volume types such as
surface_3d_element_representation, is not
effective, due to the high overhead of variable length
types in HDF5. In the HULL collection, the
uncompressed HDF5 file is actually larger. Even for
CONROD, the percent of storage saved by using
HDF5 is not high.

• Method 2, which replaces high-overhead variable
length types with fixed-length types and padding, is a
much better choice than Method 1. However, this is
obtained with the pre-knowledge of the data pattern
and also with the loss of self-description available
when storing variable-length elements.

• Storing the unchanging values as HDF5 attributes, as
in Method 1-A and 2-A, can sometimes improved
storage efficiency. This is demonstrated with the
small HULL collection, where Method 2-A saved
10% more than Method 2. This change seemed to
be of no help for the compressed datasets, however.

• For compression, storage using fixed-length arrays as
in Method 2 is highly beneficial. The percentage
saved is at least doubled using Method 2 over
Method 1.

• When the files were increased 100-fold in size, the
same patterns appeared, with HDF5 modestly more
effective for the large datasets than for the smaller
ones.

8 Conclusion and future work
HDF5 is considered as a binary option to the text-based
STEP formats, especially as an alternative to large STEP
files such as those with FEM data that are too large to
load into memory. Certain high-frequency entities, such
as Cartesian points, nodes and element representations,
can be stored and accessed efficiently in HDF5 by storing
them as elements of HDF5 datasets.

This study found that how we choose to store these
entities in HDF5 can make a notable difference in the
size of the resulting file. For those entities that contain
variable-length components, the recommended mapping
had been to use HDF5 variable-length datatypes. This
study found that the overhead associated with variable-
length datatype storage in HDF5 leads to inefficient
storage, and when compression is not used, HDF5 files
were sometimes larger than their STEP counterparts.

An alternate datatype, which stores variable-length items
in fixed size datatypes with padding, actually saved space,
even without compression. And when compression was
applied storage savings of greater than 80% could be
achieved.

Future work. These results give confidence space can be
saved by using HDF5 instead of text formats for high
volume data. At the same time, HDF5 should also offer
benefits when applications need to perform partial access
on large datasets – that is, when datasets are too large to
be loaded into a computer’s memory. It is recommended
that this assertion be investigated further.

9 Acknowledgments
We are grateful to Robert Chadduck and Mark Conrad of
the National Archives and Records Administration
(NARA) for supporting this work, including provision of
STEP data files that were used in the testing. We also
thank the EXPRESS-binary project that developed the
material upon which this research is based, especially
David Price, Keith Hunten, Denny Moore, and Steve
Gordon. Steve and Denny provided FEM datasets that
were crucial in doing the study.

10 References
[1] M. Folk and V. Choi. “Investigations into using

HDF5 for product model data -- B-Spline and
Cartesian Point data in HDF5.” HDF Technical
Report, January 2007.
http://hdfgroup.org/projects/NARA/technical_rep
orts.htm.

[2] P. Wilson. STEP and EXPRESS.
http://deslab.mit.edu/DesignLab/dicpm/step.html.

[3] D. Rivers-Moore. XML and EXPRESS as schema
definition languages.
http://xml.coverpages.org/rivers-moore-k0603.html.

[4] Welcome to EXPRESS-Binary.
http://www.exff.org/express_binary/index.html.

[5] What is HDF? http://hdfgroup.org.

This project is supported by the National Archives and
Records Administration (NARA) through a supplement
to The National Science Foundation PACI cooperative
agreement CA #SCI-9619019. The views and conclusions
contained in this document are those of the authors and
should not be interpreted as representing the official
policies, either expressed or implied, of the National
Science Foundation, the National Archives and Records
Administration, or the U.S. government.

 8

http://hdfgroup.org/projects/NARA/technical_reports.htm
http://hdfgroup.org/projects/NARA/technical_reports.htm
http://deslab.mit.edu/DesignLab/dicpm/step.html
http://xml.coverpages.org/rivers-moore-k0603.html
http://www.exff.org/express_binary/index.html
http://hdfgroup.org/

	1 Introduction
	2 Background
	3 Mapping of EXPRESS Data to HDF5
	4 Testing Data
	4.1 Collections
	4.2 Data characteristics
	4.3 Testing scalability with larger files

	5 Storage Formats in HDF
	5.1 Method 1 – use exact EXPRESS-HDF5 mapping v. 6.
	5.2 Method 2 – substitute fixed length for variable-length elements
	5.3 Method 1-A or 2-A – remove repeated values
	5.4 Summary
	5.5 Data compression

	6 Results
	7 Analysis
	8 Conclusion and future work
	9 Acknowledgments
	10 References

